Giant Metal-Insulator-Metal Transition Induced by Selective Deuteration of the Molecular Conductor, (DMe-DCNQI)₂Cu (DMe-DCNQI = 2,5-dimethyl-N,N'-dicyanoquinonediimine)

Shuji AONUMA,* Hiroshi SAWA, Reizo KATO,* and Hayao KOBAYASHI[†]
Institute for Solid State Physics, The University of Tokyo, Roppongi, Minato-ku, Tokyo 106

†Department of Chemistry, Faculty of Science, Toho University, Funabashi, Chiba 274

The Cu salts of selectively deuterated DMe-DCNQI's were prepared, and the electrical conductivities were examined. By deuteration of two hydrogens of the methyl groups, a drastic metal-insulator-metal transition was induced for the first time in a non-alloy system at ambient pressure. On the other hand, deuteration of two ring hydrogens or one methyl hydrogen did not affect the stability of a metallic state down to 4.2 K. These phenomena are discussed in terms of the "chemical pressure" effect.

The Cu salts of R^1 , R^2 -DCNQI's (2,5-disubstituted-N,N'-dicyanoquinonediimines)¹⁾ provide various unique characters due to the interaction between the conducting $p\pi$ electrons on the DCNQI columns and the 3d electrons of the Cu atoms. Among the Cu salts, $(DMe\text{-DCNQI})_2$ Cu is of special interest. It indicates a metal-insulator (M-I) transition at pressures above 100 bar, whereas it is metallic down to the lowest temperatures at ambient pressure. In the very low pressure region, the reentrant behavior (a metal-non-metal-metal transition) is observed.²⁾ The reentrant state has attracted much interest because it suggests the possibility of the heavy electron system. This experiment can be achieved only by a helium-gas-pressure method, which is technically difficult. The reentrant state is produced also in the alloy systems of $((DMe)_{1-x}(MeBr)_x-DCNQI)_2Cu^3)$ and $(DBr-DCNQI)_2Cu_{1-x}Li_x$. Though the practical difficulty can be avoided in these systems, there exists a severe effect of disorder.

Recently, Hünig et. al reported a M-I transition induced by the introduction of deuterium atoms $(^2D)^{.5}$ This phenomenon has been explained on the basis of the "chemical pressure" due to a steric isotope effect. $^{.5,6}$ Quite recently, we found the giant reentrant behavior in the (-h)- $(-d_8)$ alloy system, $((DMe-DCNQI-h)_{1-x}(DMe-DCNQI-d_8)_x)_2Cu.^7)$ In this paper, we attempted to produce the ambient-pressure reentrant state in a non-alloy system by selective deuteration of DMe-DCNQI, where the experimental difficulty or the severe disorder is excluded. Using the x-T phase diagram for the (-h)- $(-d_8)$ alloy system as a guiding principle, we aimed at the preparations of $n \le 4$ entries among thirty-five deuterated species of the DMe-DCNQI- d_n family.

In order to readily recognize the substitution pattern, which is found to be an essential factor (vide infra), the expression is simplified in this paper as $-d_n[a_1, a_2; b]$, where a_1 and a_2 are numbers of ²D's in each methyl group, and b is that in the six-membered ring. The deuterides synthesized herein are

 $-d_1[0,0;1]$, $-d_2[0,0;2]$, $-d_1[1,0;0]$, $-d_2[1,0;1]$, $-d_2[1,1;0]$, $-d_3[1,1;1]$ and $-d_4[1,1;2]$.

The methyl $^2\mathrm{D}$'s were introduced by the reduction of the corresponding α -chlorinated p-xylenes by Zn powder in $\mathrm{CH_3CO_2D.8}^8$) Deuterations of the ring hydrogens were performed by applying $^1\mathrm{H}/^2\mathrm{D}$ exchange reactions in acidic media of xylidines 6) or of xylenes. Representative routes were shown in Scheme 1. Deuteration selectivity was checked by $^1\mathrm{H}$ -NMR (peak areas and $^1\mathrm{H}^{-2}\mathrm{D}$ coupling patterns) and mass spectra. Isotopic purities of the methyl $^2\mathrm{D}$'s would be $\geq 91\%$ at least, and those of the ring ones would be $\geq 97\%$. Details will be published elsewhere.

Fig. 1. Temperature dependence of the normalized resistance of the DMe-DCNQI- d_n salts. (a) $-d_2[1,1;0]$ (\diamondsuit on cooling, \square on warming) and $-d_4[1,1;2]$ (\triangledown on cooling, \triangle on warming) (b) $-d_2[0,0;2]$ (\diamond). The full circles (\bullet) are for the -h salt.

$a_1 + a_2$	$a_2 = 0$	1	2	3	 6
b = 0			Reentrant ^c)	M-I	M-I
	$r = 5 \times 10^{-3}$	$r = 3 \times 10^{-3}$	$r = 1 \times 10^{-3}$	$T_{M-I} = 58 \text{ K}^{\text{d}}$	$T_{\mathrm{M-I}} = 73 \mathrm{~K}^{\mathrm{d}}$
1		Metallic ^{a,b)}			M-I
	$r = 2 \times 10^{-3}$	$r = 2 \times 10^{-3}$	$r = 2 \times 10^{-3}$		$T_{M-I} = 83 \text{ K}^{e}$
2	Metallic ^{a)}	in progress	Reentrant ^{c)}		 M-I
	$r = 2 \times 10^{-3}$		$r = 1 \times 10^{-3}$		$T_{\text{M-I}} = 82,^{\text{d}}) 84 \text{ K}^{\text{f}}$

Table 1. Electrical Conductivity and the Ratio $r = \rho_{4.2 \text{ K}}/\rho_{290 \text{ K}}$ of (DMe-DCNQI- d_n)₂Cu

- a) With slight shoulder around 50 K. b) Mixture of two positional isomers.
- c) Giant metal-insulator-metal transition. d) Ref. 5. e) Ref. 6. f) Ref. 7.

The Cu salt crystals were prepared by the slow chemical reduction of DMe-DCNQI- d_n in the presence of $(Et_4N)_2[CuBr_4]$ and $(n-Bu)_4NI$ in acetonitrile.⁷⁾ Electrical resistivity (ρ) was measured along the crystallographic c axis (needle axis) by the standard dc four-probe method down to 4.2 K. Electrical contacts were made with conductive gold paste using 10- μ m gold wires.

The giant "reentrant" behavior was observed in the $-d_2[1,1;0]$, $-d_3[1,1;1]$ and $-d_4[1,1;2]$ salts. As shown in Fig. 1(a), there occurs an extremely drastic M-I transition around 60 K in the cooling process. This insulating state continues down to ca. 20 K. Then, a metallic state appears again after a sudden drop in resistivity of at least 10^7 order. There exists a certain hysteresis. In the warming process, this reentrant metallic (M_R) state transforms to the insulating state at ca. 35 K. The high-temperature metallic state appears again at ca. 60 K. In addition, the $\rho_{4.2 \text{ K}}/\rho_{290 \text{ K}}$ ratio (r) of the reentrant samples are less than half of that of the DMe-DCNQI-h salt (Table 1).

The $-d_1[0,0;1]$, $-d_2[0,0;2]$, $-d_1[1,0;0]$ and $-d_2[1,0;1]$ salts are all metallic down to 4.2 K. Compared with the -h salt, the enhancement of conductivity was also observed at the lowest temperature (Table 1). Very slight shoulder was observed around 50 K (Fig. 1(b)). These suggest the possibility that the abovementioned M_R state is going to appear in the low-temperature region of these salts.

It would be of interest to evaluate the effect of a 2D -substitution pattern. The $-d_2[1,1;0]$ salt shows

the reentrant behavior, whereas the $-d_1[1,0;0]$ salt is metallic. This marked difference arises from only one $^2\mathrm{D}$ on the methyl group. On the other hand, the $-d_2[1,0;1]$ and $-d_2[0,0;2]$ salts are metallic. Thus, the methyl $^2\mathrm{D}$ works more effective than the ring one. This situation can be understood from the crystal structure. These salts are all isostructural with a space group of $I4_1/a$. The chemical pressure arises from the contraction of the DCNQI column along the c axis due to the size relationship of C-D < C-H. 5,6) The space-filling drawing of the DCNQI column (Fig. 2) indicates that the major inter-planar interaction comes from the van der Waals repulsion between the neighboring methyl groups.

Methyl Group

Fig. 2. Space filling drawing of the DCNQI column for (DMe-DCNQI)₂Cu.

Due to high cost for the preparation of the deuterides, it is important to make a good choice of a

target compound. Quantitative estimation of the deuteration effect will be useful as a guiding principle for a future synthetic study. The effective chemical pressure (P_{eff}) would be expressed as a function of a_1 , a_2 and b. From comparison of the transition temperatures with those in the P-T phase diagram of Tomić et. $al_*^{(2)}$ we can estimate the P_{eff} of the $-d_8[3,3;2]$ salt as ca. 500 bar, and that of the $-d_2[1,1;0]$ salt as ca. 150 bar. In addition, the ring 2D works far less effectively than the methyl 2D . Based on these considerations, we tentatively assumed that P_{eff} /bar $\approx 75 \{(a_1 + a_2) + 0.2b\}$. Figure 3 indicates a P_{eff} -T phase diagram obtained by using this equation.

In conclusion, the selective deuteration of (DMe-DCNQI)₂Cu has enabled us to control the chemical pressure. Application of this technique, together with the empirical $P_{\rm eff}$ value, easily produces the reentrant state in a non-alloy system at ambient pressure without any practical difficulty. Further studies on the physical properties of the M_R state are in progress.⁹)

This work was partially supported by Grant-in-aid for Scientific Research on Priority Area "Molecular Magnetism" (Area No. 228 / 04242205) from the Ministry of Education, Science and Culture of Japan.

Fig. 3. P_{eff} -T phase diagram for (DMe-DCNQI- d_n)₂Cu.

References

- A. Aumüller, P. Erk, G. Klebe, S. Hünig, J. U. von Schütz, and H.-P. Werner, Angew. Chem., Int. Ed. Engl., 25, 740(1986); R. Kato, H. Kobayashi, and A. Kobayashi, J. Am. Chem. Soc., 111, 5224(1989).
 For reviews, see: S. Hünig and P. Erk, Adv. Mater., 3, 225(1991); S. Hünig, Pure Apll. Chem., 62, 395(1990).
- 2) S. Tomić, D. Jérome, A. Aumüller, P. Erk, S. Hünig, and J. U. von Schütz, J. Phys. C, Solid State Phys., 21, L203(1988).
- 3) A. Kobayashi, R. Kato, and H. Kobayashi, Synth. Met., 41-43, 1769(1991); Y. Nishio, K. Kajita, W. Sasaki, R. Kato, A. Kobayashi, and H. Kobayashi, Solid State Commun., 81, 473(1992).
- 4) R. Kato, H. Sawa, S. Aonuma, Y. Okano, S. Kagoshima, A. Kobayashi, and H. Kobayashi, Synth. Met., in press.
- 5) S. Hünig, K. Sinzger, M. Jopp, D. Bauer, W. Bietsch, J. U. von Schütz, and H. C. Wolf, Angew. Chem., Int. Ed. Engl., 31, 859(1992).
- 6) S. Aonuma, H. Sawa, Y. Okano, R. Kato, and H. Kobayashi, Synth. Met., in press.
- 7) R. Kato, H. Sawa, S. Aonuma, M. Tamura, M. Kinoshita, and H. Kobayashi, Solid State Commun., in press.
- 8) The method for C₆H₅CD₃ was applied, see R. Renaud and L. C. Leitch, Can. J. Chem., 34, 98(1956).
- 9) Similar to the case of the (-h)- $(-d_8)$ alloy system (Ref. 7), the Pauli-like suspectibility in the M_R state of the $-d_2[1,1;0]$ salts is enhanced compared with the one in the high-temperature metallic state.

(Received November 30, 1992)